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1. Introduction

In many practical situations, the goal of the experimenter is to compare two or more

populations in order to make a decision in the form of a ranking of the populations.

The best studied ranking goal concerns the best population (the most efficient drug for

an ailment, the most effective manufacturing process and so on). The classical tests of

homogeniety were not designed to provide answers to such questions. Rejecting the null

hypothesis is not the final solution to the experimenter's problem but an exercise that

underlies the need for a reformulation of the problem. Born out of this need is the statistical

theory of ranking and selection procedures.

Ranking and selection problems have been generally formulated using either the indif-

ference zone approach due to Bechhofer (1954) or the subset selection approach of Gupta

(1956, 1965). Starting from the early developments in the 1950's, these problems have

been extensively studied under various model assumptions and modifications in the rank-

ing goals. A comprehensive survey of these developments is provided in Gupta and Pan-

chapakesan (1979), who have in a later paper (1985) given a review of these and subsequent

developments with historical perspectives.

In the present paper, we review some recent developments in the ranking and selection

theory. We will focus our attention on the following topics: (A) Selecting the largest normal

mean and estimating the selected mean, (B) Empirical Bayes selection, (C) Selecting the

important regression variables, (D) Sequential selection rules, and (E) Lower confidence

bounds for the probability of a correct selection.

2. Finding the Largest Normal Mean and Estimating the Selected Mean

Let nl,... ,wk be k(2! 2) normal populations with unknown means 01,... ,Dk and a

common known variance 2 Let 0111 < ... < #[,%1 denote the ordered 9.. The population

associated with 0ik] is called the best population. The goal is to select one of the k

populations as the best. Since no procedure assures the selection of the best with certainty,

estimation of the mean of the selected population is of practical interest.
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Rim-

Let Xi denote the sample mean of nj independent observations from wi, i = 1,... , k.

The so-called natural selection rule selects as the best the population that yields the

largest Xi. When the sample sizes n,..., n& are all equal, this rule is the uniformly best

permutation invariant selection rule for a general class of loss functions. However, for

unequal sample sizes, the natural selection rule loses much of its optimality (see Gupta

and Miescke (1988)).

A natural estimator of 0(,), the selected 9i, is X[hk, the largest Xi. However, X[hj

overestimates *[k and thus overestimates 0(h) even more. Recognizing this, alternative

estimators have been studied for the present and other experimental models and goals by

the following authors: Sarkadi (1967), Dahiya (1974), Cohen and Sackrowitz (1982), Sack-

rowitz and Samuel-Cahn (1984,1986), Jeyaratnam and Panchapakesan (1984,1986,1988),

Vellaisamy and Sharma (1988,1989), Vellaisamy, Kumar and Sharma (1988), and Ven-

ter (1988). Since selection is made first, the preceding estimation problem is known as

estimation after selection.

Cohen and Sackrowitz (1988) presented a decision-theoretic framework for the com-

bined selection-estimation problem, and derived results for the case of k = 2 and n1 = n2.

Recently, Gupta and Miecke (1990) have extended the results of Cohen and Sackrowitz

(1988) and provided a detailed discussion for normal distributions problem. Rather than

the "estimating after selection," the decision-theoretic treatment of the combined decision

problem leads to "selecting after estimation."

We will first discuss the decision-theoretic approach under a general framework and

then examine the normal means case.

2.1 General Framework

Let X = (Xi,... ,Xk) be a random vector of observations having pdf f(z0) =

1 fi(zi0ID), where . = (z,...,zk) and. = (9i,...,&). Here, X may be a vector of

sufficient statistics for 0h... ,0&. The goal is to select the "population" associated with

0,W1 and to simultaneously estimate 0., the selected 0-value. For this combined problem,
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a nonrandomized decision rule is:

4(;)- ,z~)Z) (2.1)

where a(z) E {1,2,... , k) is the selection rule, and 1(,) is an estimate for 0, i = 1,... , k.

We assume an additive loss function L(f, d) given by

L(, 4) = A(fa) + B(0s, t) (2.2)

where A is the loss incurred in selecting w, as the best population when 0 is the true

parametric vector, and B is the loss of estimating 0. by to.

Adopting the Bayes approach, we assume that 0 = (01,..., 9k) has a prior distribu-

tion G. Then, for X = x, the posterior risk of d(;) can be expressed as:

r(4(;))= rA(8(;)) + ,B(8(;), ,(.)(;)), (2.3)

where
rA(9(z)) - E{A(@,u(z))IX = ;J, and

The following theorem of Gupta and Miescke (1990) is an extension of a result of

Cohen and Sackrowitz (1988).

Theorem 2.1. Let t£(z) minimize rB(i,4I(z)), i = 1,...,k, and let 8*(;) minimize

rA(8(4)) + rB(8(;),eq(Z)(;)). Then the Bayes decision rule is:

= (a(;),

Remark 2.1. It can be seen that the combined selection-estimation problem is in a sense

*selecting after estimation."

Corollary 2.1. Whenever at X = z, r(i, t*(z)) does not depend on i E (1, 2,..., k}, a* (f)

minimizes rA(a(;!)).

Let sN (z) denote the natural selection rule which selects the population corresponding

to the largest z. The following example shows that 8N is not same as a* in general.
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Example 2.1. Let Xi - N(E,, 1), i = 1,...,k, be independent. Assume that ... , , Ok

are iid having the density exp(-O), 9 > 0, and consider a loss function given by L(!, d) =

A(f,a) + (9. - is)2, where A is permutation invariant and favors selecting large 9-values.

A posteriori, at X t x, O,... ,Ok are independent and the posterior density of O is

p(Oi - yg)/#(y,), Oi > 0, where and # denote the N(O, 1) density and cdf, respectively,

and y, = zi - 1, = ... ,k. Straightforward computations yield, for i = 1,... ,k,
I (z E[OjI .y=.] j + 2LId

,(i,tL(.)) = var(e,IX =.x

-1+ 2y2+ 1jM $l-[ufl2

Thus, although 1 (.) minimizes rA(.(z)), SN is different from a*, since rB(i, t(f)) de-

pends on i E {1,...,k}.

2.2. Normal Means Problem

Let Xi denote the mean of a random sample of size ni from N(O9,o 2) population,

i = 1,... ,k, where the common variance 02 is assumed to be known. Apriori, 01,... ,Ok

are independent and O - N(;si,q,), i = 1,...,k. Thus, given X = z, 01,... ,Ok are

aposteriori independent with OI.X = z N (qiL,+L,±Ai, P" ) 9 i = 1,... , k. Also, theSqi'+pi I Pq,"'

X,'s are marginally independent with Xi - N(s,pi + q1), where pi = c2 /ni, i = 1,... , k.

Equal Sample Szes. We let n = ... = nk = n. We also assume thatp1 = ... = = =&

and q, = ... = qk = q, i.e. we have exchangeable normal priors. We assume the loss

function L(f,4) in (2.2) with two possible forms B(S.,4) and B2 (0,4.) for B(O.,4),

given by B1,(9.,4.) = 1.-tel(24
(2.4)

B2 (0.,) (0. _ .)2.

Also, A(. a) in (2.2) is assumed to be permutation symmetric and favorable to selection

of larger 9-values.

Under the above assumptions, Gupta and Miescke (1990) have shown that the Bayes

rule 4" = (a*,t.) satisfies.* = ,N and I!(;) = E{eI. = x}, i = 1,...,k.

Consider the natural decision rule dN = (&N,Ij), where L,'() = Z,, i = 1,...,k.

Although, from the frequntist point of view, dN has the undesirable feature of overes-



timating the mean of the selected population, it has been shown by Gupta and Miescke

(1990) to be an extended Bayes rule.

Unequal Sample Sizes Case. Here we will consider two particular loss functions,

namely, f ,1 (.9,4) = €([]-9.) + i98 - £81,(25

L 2 (!,4) = C(D[k] - 0,)2 + (0, - t,)2, (2.5)

where c > 0 gives relative weights to the two parts of the loss function. Since the sample

sizes are unequal, it is appropriate to consider non-exchangeable priors, Oi - N(/ i, qi), i =

1,... ,k. The Oj's are, of course, independent.

Under the above setup, with lou /unction L1 , the Bayes rule (by Theorem 2.1) employs

the estimator t!(z) = (qjxj + pip,)/(q + pi) for 9,, i = 1,...,k, and one has to find s*(z).

For any decision rule d = (s,t.), the posterior risk at X = z associated with selection

s(z) = i E {1,..., k} turns out to be

_ p q. + p, 2p,)q,
qi +pi +( ri+p)

This leads to the Bayes rule d* = (a*, t), wheret(z) = (q z,+pj )f(q,+pi), i 1, k,

and a(z) maimizes cIt(z) - [2qip/r(qi + pi)]2, i = 1,... ,k.

It is interesting to note three special cases, which are as follows.

Case 1: Noninformative prior (qi -+ o, i = 1,...,k). In this case, t.(:) = z, i =

1,...,k, and sa(z) maximizes xi - c-1(2p/ir)i, i =,...,k.

Case 2: Prior variances proportional to sample variances (qi = -pi, i = 1,... ,k, for

some -y > 0). In this case, I!(z) = ( yxi + S)/(-y + 1), i = 1,... ,k, and a*(;) maximizes

t,(.) - c-'(2-p,/(-y + 1)r)i, i = 1,...,k. In particular, for #1 = ... = Ak = A (say),

ts(z = ('Yz +I)/('y-+ 1), i = 1,...,k, and a*(;) maximizes zi-¢-{2(-y+ 1)pj/7r), i=
l..k.

Case 3: Posterior decreasing in transposition (DT), i.e. q,-1 + - = - i = 1,... ,k,

for some fixed r > 0. In this case, 1(:) = r(p7'zi + q-gs), i = 1,... ,k, and a*(;)

maximizes I(f), i = ,-...,k. In particular, when MI = ... = ;&k = i (say), .(z) =

p-(z -A) +IA, i ---- I,... ,k, ad a*(;) maximizes p.-1 (xi - ;&), i = 1,... , k.



It has been shown by Gupta and Miescke (1990) that the decision rule of Case 1

(noninformative prior) is an extended Bayes rule.

In the cue of loss function L2 , the analysis gets more complicated. For finding the

Bayes rule, we have the same £t(;) as in the case of L1 , but for finding a*(.) one has to

minimize

cE {[e[k] - e,]2]I. = .} + qp (2.6)

The difficulty lies in the fact that, for any i, the conditional distribution of (0[k], O0) at

X = x does not yield simpler representations for the conditional expectation in (2.6),

which in most situations has to be evaluated on a computer.

As in the case of LI, we can specialize the problem in the three special cases regarding

the assumptions about the prior. In Case 3, the Bayes rule is the same as in the case of

LI.

3. Empirical Bayes Selection Procedures

The empirical Bayes approach in statistical decision theory is typically appropriate

when one is confronted repeatedly and independently with the same decision problem. In

such instances, it is reasonable to formulate the component problem with respect to an

unknown prior distribution on the parameter space. One then uses information borrowed

from other sources to improve the decision procedure for each component. This approach

is due to Robbins (1956,1964). Empirical Bayes procedures have been derived for multiple

decision problems by Deely (1965). Recently, Gupta and Hsiao (1983), Gupta and Leu

(1983), and Gupta and Liang (1986, 1988a,b, 1989a,b,c) have investigated empirical Bayes

procedures for several selection problems. Many such empirical Bayes procedures have

been shown to be asymptotically optimal in the sense that the component Bayes risk will

converge to the optimal Bayes risk which would have been obtained if the prior distribution

were fully known, and the Bayes procedure with respect to this prior distribution was used.

In this section, we will describe empirical Bayes selection procedures with respect to

a standard. Two kinds of empirical Bayes procedures will be considered. One is to incor-
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porate past data to improve the current decision. The other is to incorporate information

from each other so as to simultaneously improve the decisions for each of the component

problems under study. A Poisson distribution model is used as an example to describe the

empirical Bayes idea and methods.

3.1. Formulation of the Empirical Bayes Selection Problem

Let w,..., xk denote k independent populations. For each i = 1,... , k, let Xi denote

a random observation arising from population r. It is assumed that Xi follows a Poisson

distribution with probability function f,(z109) where

f,(Xle,) = e-',oF/X!, x = 0,1,2,...; 9, > 0.

Let 00 > 0 be a known standard. Population vi is said to be good if 9, _> 00, and

bad otherwise. The goal is to select all the good populations and exclude all the bad

populations.

Let fl = (I = (0G,...,Ok)J~i > 0, i = 1,...,k} be the parameter space and let

A= {4= (al,...,ak) ai= 0,1, i = 1,...,k} be the action space. When action a is taken,

it means that population irw is selected as a good population if ai = 1, and excluded as a

bad one if ai = 0. For each 9 E fl and a E A, the loss function L(q, a) is defined to be:

k k

L(i, ) = a(Oo - 9,)I(Oo - 9,) + ,(1 - a.)(O, - Oo)I(O, - O0) (3.1)
i==1

where I(z) = 1(0) if z > (<)0.

It is assumed that for each i, the parameter Oi is a realization of a random variable

Oe which has a prior distribution Gi. It is also assumed that 0.,... ,Ok are mutually

independent. Thus 0 = (ei,..., 0,,) has a joint prior distribution G(!) = 11 Gi(0i).

For each i = 1,..., k, let Xi be the sample space of Xi, and let I = X x... x Xk. Let

X = (X,...,Xk). A selection rule d = (dl,...,dA,) is defined to be a mapping from I

into [0, 1]k such that di(f) is the probability of selecting population wi as a good population

when X = z is observed. Let D be the class of all selection rules, and let r(Q, 4) denote
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the Bayes risk associated with each d E D. Then, r(q) = inf r(q,4) is the minimum

Bayes risk. 
4ED

The Bayes risk associated with any rule d E D can be written as:

r(q,4) = ,(q,d,) (3.2)

where
k

, , = ( d(o - p,,(z,)]ds() [1 (zi) + C,, (3.3)
z~x j=1

where tp,(z,) = EjOjX, = z,] = h,(z, + 1)/h,(z,) is the posterior mean of e, given

Xi = x,, h,(z,) = f(z,)/G(z,), fi(z,) = fo0 *f(zJj)dGi(9) = fo e'/z !dGi(6) =

a(zi)h,(z,) is the marginal probability function of the random variable X,, and a(x,) =

(z,!)-', Ji(x,) = fo e-'Odi(f) and C, = f$7(f - fo)dGd(f).

It follows that a Bayes rule, say 4B = (dlB,. .., dkB), is clearly given by: For each

diB(~) I if jP,(x,) ! 0o; (4
i=-7 1,...,4,

1 0 otherwise.

k
The minimum Bayes risk is: r(q) = L r(qg,dB).

When the prior distribution G is unknown, it is not possible to apply the Bayes rule

4B for the selection problem. In the following, the empirical Bayes approach of Robbins

(1956,1964) is employed. First, we discuss the case where certain past observations from

each of the k populations are available.

3.2. Incorporating Information from Past Observations

According to the usual empirical Bayes framework, it is assumed that for each i =

1,... ,k, there are marginally lid past random observations Xil,..., X,, with marginal

probability function fi(z) available when a decision is made. Three empirical Bayes selec-

tion rules are constructed according to how much we know about the prior distribution
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3.2.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Thus, a nonpara-

metric empirical Bayes approach is employed. It should be noted that (odx(z) is increasing

in zi for each i = 1, ... , k. Therefore the Bayes rule dB is a monotone selection rule. Thus,

it is desirable that the considered empirical Bayes rule be also monotone.

For each i 1,...,k, and z = O, 1,2,..., define

f,4 z) n- I () X
i= I

h,.(z) = fn(z)/a(.).

Let Ni3 = max Xi - - 1 and for each z = O,,..,, N, define1<j<.t

Vn(z) = [h,3(x + 1) + 6311[hi3(x) + 6],

where 6. > 0 is such that 6b = o(1).

Since (oi. (z) may not be increasing in z, a smoothed version of Vn (z) is given be-

low. Let {(o(z)}_% be the isotonic regression of {oq(z)}'- with random weights
{Wj.(z)}fo, where Wi.(x) = [his(z) + 63Ja(z + 1). For y > N, let V!,,(y) =

Therefore, p,!.(x) is nondecreasing in z. We may use o! (z) to estimate i(xz). Based on

o,,(z), i = 1,...,k, an empirical Bayes rule d* = (d!,,...,dk,) is proposed as follows:

For each i 1,..., k, and z E X,

•1 if > 90, (3.5)
0 otherwise.

3.2.2. A Parametric Empirical Bayes Rule

It is assumed that the prior distribution G, is the gamma distribution with unknown

shape and scale parameters a, and Pi, respectively, i = 1,..., k. That is, Gi has a density

function g,(0ai, Pi), where

g,(9la,, ,) ffieJ'e°a-i,-P"/r(a,), o > o.

10



Then, Xl,..., Xn are iid with marginal probability function f(z) = r(z + ai)p3'/

Ir(ai,)(1 + x,)+,.,], Z = 0,1,2,.... Also, (p) = Straightforward computations

yield that Ai =- E[X,1 ] = ai/fl, X,2 = E[X 2 ] = a,(a, + 1)2 + a,17 1 . Thus, 1, =
( -, -/ 2 ) 1 and a, = i (1,2 -Ail -i) -1 . Therefore, ,(z) - [z(Js,2 - il -

2,) + A2]( 2 - l.

For each i = 1,...,k, let Ailn = n- ' E Xi and si2n - n-1  X . That is, /iln
j=l j=1

and Ai2n are moment estimators of Ail and Ai2, respectively. Since it is possible that

is2n - n - - v 0 though - - pi > 0, thus, for each z = 0,1,..., define

On"+ I" if 'in > 0, (3.6)
z otherwise.

Then, an empirical Bayes rule 4n = (d,... ha) is proposed as follows: For each

i =1,...,k, and z E X,

- 1 if O,(z,) 0o; (37)dn()- 7) 0 otherwise.

3.2.3. A Hierarchical Empirical Bayes Rule

Suppose that the prior distribution Gi is a gamma distribution with a known shape

parameter a, and an unknown scale parameter 13,. In this situation, the preceding para-

metric empirical Bayes approach can be applied here. However, a new method, called

hierarchical empirical Bayes, is introduced in the following.

Since #, is a scale parameter, it is assumed that Oi has an improper prior p(1) -

.i. > 0. Thus, conditional on Pi, Xi1,... , X, are iid with the probability func-

tion fi(zlfl3) = fofi -(lf)g (Oa, P)df = 0,1, 2,..r(,(l+,+Therefore,
Xii,... , Xi, has a joint marginal probability function Zia(z~,... ,z,,), where

f,(xi,... ,z,) -- I f,(z,,3)p(P)dP

i [ri( ,) r(na,)r(b, - na,)/r(b,)

i-U
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where bi =nai + E zi. Thus, the posterior density function of fli given (Xil,..., Xi.) =
j=1

(Xi 1,.. ,Z,) is

P(X 1 zi,...,zsu) = n-8i1(1 + ,)bir(bi)/[r(nai)r(bi - ncr)],

and the posterior mean of fli given (zi,... ,Zin) is

nai if E i>2,

(00 otherwise.

For each i 1,... ,k, and (z,,... ,Xin), define

"in(z )  = +Pjft_ if E-j!2 (3.8)

0 otherwise.

We then propose an empirical Bayes rule 3n = (dn,... ,dkn) as follows: For each

1 if Tn(Xi) _> 00;(3)
= otherwise.

3.2.4. Asymptotic Optimality

For an empirical Bayes selection rule d, , let r(G, 4n) denote the overall Bayes risk.

That is,

r(,4n) = k :[00o - -()]Ei,,d, (x + C]

where the expectation Ein is taken with respect to (Xi,...,Xin). Since r(G) is the

minimal Bayes risk r(G,4 3)-r(q) _ 0 for all n. The nonnegative difference r(G,d)-r(q)

can be used as a measure of optimality of the empirical Bayes rule d.

Definition 3.1. Let {440.0. be a sequence of empirical Bayes rules. (4)n,}° is said to be

asymptotically optimal of order r. relative to the prior distribution G if r(q, 4n) - r(q)=

0(r,), where (r.)'30It is a sequence of positive numbers such that lim 73t = 0.n --400

12



Following Gupta and Liang (1989c), it is easy to obtain the following result. Let

B,(fo) = {xj~p,(x)< 8o) and let

= maxA f(0o) i B,(0o) : 0;{-1 otherwise

Theorem 3.1. Let . denote any of the three precedingly constructed empirical Bayes

selection rules d*, and ?.. Suppose that f00 dG (0) < oo and m, < oo for all i =

1,... ,k. Then, r(9, 4) - r(G) = O(exp(-cet)) for some positive constant c, where the

value of c varies depending on the empirical Bayes selection rule used.

3.3. Incorporating Information from Other Components

We now consider the case where it is assumed that the k prior distributions Gj,..., Gk

are identical, but there is no past observations available. Under this assumption, X,..., k

are marginally iid with probability function f(z) = fo e-e00/z!dG(0) where G = G, =

... = Gk. Therefore, we can still incorporate information from each other to improve

the decisions for each of the k component decision problems. The idea is described again

through the nonparametric empirical Bayes, the parametric empirical Bayes and the hier-

archical empirical Bayes approaches.

3.3.1. A Nonparametric Empirical Bayes Rule

It is assumed that the prior distribution G is completely unknown. Following the

discussion of Subsection 3.2.1, a nonparametric empirical Bayes selection rule is constructed

as follows.

k
For each i = 1,...,k, let Nih = maxXi-1, and let fsk(y) = k 11L (I)(Xy), hik(y) =

fj,(y)/a(y), y = 0,1,.... Also, let ipik(y) = [hik(y + 1) + 6 k]/[hik(Y) + 6 1 for each

y0 = 0, 1,..., Nik, where 6k > 0 is such that 6A= o(l).

Let ( jk (y)}x1=0 be the isotonic regression of {v'ik(yg)}1o with random weights {Wi k(V) =0,

where Wk(y) = [hk(y) + 6hia(V + 1). For y > Nh, let po (y) = (o, (N,%). Now, an em-

pirical Bayes rule 4k = (di,... ,djk) is proposed as follows: For each i = 1,...,k, and

13
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(X,...,X) = (z,...,zk), define

I if q* (z) _> 0;
dif i(~ o (3.10)d~()-- ={ 0 otherwise.

3.3.2. A Parametric Empirical Bayes Rule

It is assumed that the prior distribution G is a member of gamma distribution family

with probability density function g(fa,/), where

g(81a,fl) = o'e' /r(a), 9> 0

and both the parameters a and P are unknown. Following the discussion of Subsection
k k3.2.2, for each i = 1,...,k, let pt(i) = a X3 , and I2k(:) = X2. Let

j=1 j=

k --- 12k(i) -/slk(i) - A k (i). Define

=i (i ;92A.(W -P'h(SW if ra > 0; (.1
zx otherwise.

An empirical Bayes rule dk = (41k,... , dki) is proposed as follows: For each i - 1, ... , k

and (X,... ,Xk) = (xi,... ,zk), define

= 1 if O ,/(x,) 6_; (3.12)
ask(-:) 0 otherwise.

3.3.3. A Hierarchical Empirical Bayes Rule

It is assumed that the prior distribution G is a gamma distribution with a known

shape parameter a and an unknown scale parameter P. Similar to that of Subsection

3.2.3, a hierarchical empirical Bayes rule 3,t = (dA;,... ,dk) is constructed as follows.

For given (Xi,... ,X) (xi,... ,xk), let

fk= ka I/ - if > 2;

oo otherwise.

14



For each i =1,...,k, and (X,...,Xh) =(l,...,zk),define

k
(,,(Z=, + a)/(1 + Pk) if E zy -> 2; (3.13)

10 otherwise.

Define, for each i =1,...,k, and (X,..., Xk) = (zl,...,zk),

1 if Pik(xi) _90 (3.14)"k()=0 otherws.

3.3.4. Asymptotic Optimality

Let dk denote any of the three precedingly constructed empirical Bayes selection rules.

The associated overall Bayes risk r(G, dk) is:

k

r(G,4k) = Er,(Qdk),
i=1

where

r,(G, dik) = EkE,[(0o - (i(Xi))dk(X)1 + C

where the expectation Ei is taken with respect to Xi and the expectation Eik is taken

with respect to (XI,. .. ,X,-.,X,+j,... ,Xk). Also, here C = fe-(O - eo)dG(O).

Since r(q) is the minimal Bayes risk, r(q,4k) - r(Q) > 0 for all k.

Definition 3.2.

(a) A selection rule dk is said to be weakly asymptotically optimal relative to the prior

distribution G if

fr(q,4k) - r(q)J/k -+ 0 as k - oo.

(b) A selection rule dk is said to be strongly asymptotically optimal relative to the prior

distribution G if

r(,4) - r(.) -- o as k --, 0o.

Note that the strong asymptotic optimality implies the weak asymptotic optimality.

The weak asymptotic optimality of compound decision rules has been studied in the liter-

ature by many authors, notably Vardeman (1978,1980), Gilliland and Hannan (1986), and
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Gilliland, Hannan and Hwang (1976), though the formulation of their compound decision

problems are different from the one described previously. For the present problem, Gupta

and Liang (1989c) obtained the following strong asymptotic optimality.

Let B(Oo) = {xl(z) < So} where ,(z) = = ... = pi,(z) since G =... =Gk

and let

M maxB(Oo) if B(Oo) 96m - -1 otherwise.

Theorem 3.2. Let 4k denote any of the three precedingly constructed empirical Bayes

selection rules d,k and 3. Suppose that fo 9dG(9) < oo and m < o. Then, r(G,4d) -

r(G) = O(exp(-ck + Ink)) for some positive constant c, where the value of c varies

depending on the empirical Bayes rule used.

4. Selection of Variables in Linear Regression

In applying regression analysis in practical situations for prediction purposes such as

economic forecasting or weather prediction, one is faced with a large number of indepen-

dent variables. In such situations, it may well be sufficient to consider only a subset of

these predictor variables for an "adequate" prediction. Thus arises a problem of choosing a

"good" subset of these variables. Hocking (1976) and Thompson (1978a,b) have reviewed

several criteria and techniques that have been used in practice. However, these procedures

are ad hoc in nature and are not designed to control the probability of selecting the im-

portant variables. McCabe and Arvesen (1974) and Arvesen and McCabe (1975) were first

to formulate the problem in the framework of Gupta-type subset selection by considering

models involving all possible subsets of an arbitrarily chosen size. Huang and Panchapake-

san (1982) considered a different formulation taking into consideration all possible reduced

models. Using different criteria for comparing any reduced model with the "true" model,

this problem was also investigated by Hsu and Huang (1982) who used a sequential proce-

dure, and by Gupta, Huang and Chang (1984) who used simultaneous tests of a family of

hypotheses in constructing their procedure. Recently, Gupta and Huang (1988,1989) have

further studied this problem. We discuss their results below.
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Consider the standard linear model

SX16 + (4.1)

where Y' = (Yi...,Y,) is an n-vector of random observations, X - [X 1,... ,XPi]

is an n x p matrix of known constants, 9' = (PO, il,. .. , P- 1) is a p-vector of unknown

parameters, and g - N(0, a21*). Here I is a column vector of I's and I. is an n x n identity

matrix. The model (4.1) with p-1 independent variables is considered as the "true" model.

Any reduced model whose "X matrix" has r columns is obtained by retaining any r - 1

of the p - 1 independent variables X 1,X 2,. . .,X ,_ 1 , where 2 < r < p. For each r, there

are k, - (P-') such models, which are indexed arbitrarily i = 1,... , k,.. A typical model

from this group will be referred to as Mrj, which can be written as

E(Y) = Xri., (4.2)

where Xri and P.,i are obtained from X and 0, respectively, corresponding to the variables

that are retained in the model. In our discussion, all expectations and probabilities are

calculated under the true model (4.1).

Let SSri denote the residual sum of squares for the reduced model M,,, 1 < i < k,, 2 <

r <p. Then

SSA/ -, (Mr , rl ) (4.3)

where ,' = n - r is the degrees of freedom and A,. is the noncentrality parameter. This

gives

E(SS,,) = vv¢0 + 2ohj,. (4.4)

Since v02 is fixed, it is clear from (4.4) that A j should not be large for a good model. This

motivates the criterion employed by Gupta and Huang (1988), namely, any reduced model

M,i with the associated noncentrality parameter A,, is defined to be inferior if Ar, A,

where A > 0 is a specified constant. The goal is to eliminate all inferior models from the

set of 2P-I - 1 regreion models including the true model. For this goal, Gupta and Huang

(1968) proposed and studied a two-stage procedure. In the first stage, inferior models are
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eliminated. Then, in the second stage, one of the models from the retained set (if it has

more than one) is selected.

Consider, as an estimator of X,.j,

n- pSSj L

2 SSP, 2 (4.5)
n-p 1- R. Me

2 1 - R 2  2

where R 2 and R2. are the multiple correlation coefficients of the models (4.1) and (4.2),

respectively. Define, for n - p > 2,

fr, = 2 n - p - [21, + (p - r)] - (2p - 3r). (4.6)
n-p

Gupta and Huang (1988) have shown that fri is an unbiased estimator of rri = M -

(n - 2r), which is the standardized total squared error.

The two-stage procedure R. of Gupta and Huang (1988) is as follows:

Rs: At stage 1, eliminate all models Mri for which

Iri _! dr (4.7)

and at stage 2, select from all the models that are retained after stage 1 the one with the

smallest fi. The constant d, in (4.7) is chosen to satisfy

D, = [(dr+ v,) 2L_ ]n -p (4.8)

where D, is the 100(1 - P*) percent point of the noncentral F distribution with p - r and

n - p degrees of freedom and noncentrality parameter A. It can be shown that, for the

rule R.,

P{all inferior models Mi are eliminated} > P*.

Several authors have studied the influence on the fitted regression line when a part of

the data is deleted. In the model (4.1), let I denote the usual least squares estimator of 0_

basd on the full data and let AA be the least squares estimator based on a subset of the
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data. An empirical influence function for A is IFA = AA - A. For a given positive definite

matrix M and a nonzero scale factor c, Cook and Weisberg (1980) defined a distance

DA (M, c) between A and $A given by:

DA(M = (IFA)'M(IFA)
C

where M can be chosen to reflect specific interests. Recently, Gupta and Huang (1989)

have integrated this concept of influential data with their procedure for selecting important

independent variables discussed previously. They have considered deleting one observation

at a time from the data set Y. Recalling that Mi denotes a reduced model obtained by

retaining r - 1 of the p - 1 independent variables, let Mi(,) denote the model obtained

from Mri by deleting the I-th observation in Y. Corresponding to A, in (4.3) associated

with the model Mri, we have the noncentrality parameter Ari(f) associated with the model

M71(a). Analogous to 3ri of (4.5) for the model M,, we define, in the case of Mri(0,

n - p -I SSi_ -n-r-1 (49)
2 SSPl(I) 2

We can find a constant d, such that

infP{,() - } = P*. (4.10)

The new two-stage procedure R. of Gupta and Huang (1989) is defined exactly as their

earlier procedure R. except that, in stage 1, a model M, in eliminated if

ArL(j) -: d for some i for which Ip1(L) < d, (4.11)

instead of (4.7).

5. Sequential Selection Procedures

A substantial amount of original research on sequential selection procedures accom-

plished during the early years of the ranking and selection theory was published as a

monograph by Bechhofer, Kiefer and Sobel (1968). These and subsequent developments
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have been discussed in Gupta and Panchapakesan (1979), who have recently (1990) re-

viewed further developments in the sequential selection theory. In our present discussion,

we will confine our attention to a few specific recent results.

5.1. A Subset Selection Procedure with a New Goal

Let vr,... ,7rA be k independent normal populations with unknown means 01,... ,Ok,

respectively, and a common known variance a2. For a specified 6 > 0, any population

w, for which 9, > max 9, - V is defined to be a good population. Gupta and Liang- l<j<k

(1988c) considered the goal of selecting a subset of the k populations which includes the

best population (the one associated with the largest 0) and at the same time excludes all

that are not good. An event of selecting a subset consistent with this goal is denoted by

CS(6). This is different from what is known as 6 *-correct selection in the literature.

Let Xi,Xi 2 ,... be a sequence of independent observations from sri, i = 1,... ,k.

For m > 1, define Ym = Xi. Let Sm denote the set of contending populations at
j=1

the beginning of stage m and let IS,.I denote the size of Smn. Gupta and Liang (1988c)

proposed and studied the following procedure.

RN:GL: Choose a 61 in (0,6"/2). At stage m(m = 1,2,...), take one observation
from each population in S.. Include in S,+i only those 7ri's in Sm for which

-1 --r- - log) _-_---l for all 7r E Sm, r#i,

T4 1-po

and eliminate all other ri's from any further consideration. Now, label as good only those

ri's in S,,+1 that have not been labeled yet and for which
___+__ m(6"2 - 6?) k -

( - Y ) + _> log for allr, E Sm+, t i.

Stop sampling if either ISm+11 = 1 or Sm+l does not contain any unlabeled population,

and make the terminal decision: "Select all populations in Sm+1", otherwise, go to stage

M +1.

It should be noted that a population is not labeled until and unless it qualifies to be

called good. Any population, once labeled, is not examined for labeling again. However,
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it is possible that a labeled population is eliminated subsequently. The populations that

are selected by the terminal decision are precisely those which have been found good at

some stage and which have survived elimination. The choice of 61 in (0, 6*/2) assures that

the sequential procedure terminates with probability one. The procedure guarantees a

minimum probability P* for selecting a subset consistent with the goal. An optimal choice

of 61, however, is an open question.

Finally, it should be pointed out that Gupta and Liang (1988c) have discussed the

procedure more generally for location and scale parameter families.

5.2. Selection Procedures for the Exponential Family

Gupta and Miescke (1984) studied sequential selection for exponential family under

a decision-theoretic framework. Their treatment includes multi-stage selection and their

results relate to selection of subsets of random as well as fixed sizes.

Consider the one-parameter exponential family I given by

7I= {c(f) exp(Ox)h(z), x E RIOEe

where e C R is an interval. We consider the class of permutation invariant sequential pro-

cedures with or without elimination, employing vector-at-a-time sampling, which means

that a vector of observations (one from each) is taken from the non-eliminated popula-

tions. Let XiI, Xi2 ,... be a sequence of observations from iri (with associated parameter

0,). At stage m (m = 1, 2,...), let nm observations be taken from eligible populations. Let
N M

Wim = f Xj, where N,. = Z nj, be a sufficient statistic for 9,, based on all observations
j=1 j=1

from 7r, through stage m, and let Wm = (Wim,... ,Wkm), m = 1,2,.

Let ti, j = 1,... ,m, denote the subset of {irl,... ,irk} that is eliminated at stage

j, and t,+, denote the subset finally selected at termination. This yields a partition

{jt,... ,,tm+} of {ff ,... ,} which will be called a reord. For = ( Sl,..., ) E fl =

Ok, Lin(f;ti,...,tn,tm+i) denotes the loss incurred when the procedure stops at stage

m with the record (t,... ,tmn,tn+1}. It is assumed that (a) Lin is permutation invariant,
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and (b) L. increases if a record is changed so that a better population is eliminated before

an inferior one.

A natural terminal decision, at stage m, selects only those populations among the

noneliminated ones which yielded the largest values of Wire. Gupta and Miescke (1984)

have shown that between two procedures which differ only in their terminal decisions, the

procedure that employs a natural terminal decision rule has a smaller risk.

One can naturally speculate that, within stages where a procedure with elimination

does not stop, natural subset selections are optimal as in the case of terminal decisions.

This has been shown to be true by Gupta and Miescke (1984) only in the case of multi-stage

procedures with sizes of the subsets selected at each stage fixed, under the assumption that

I is atrongly unimodal (i.e. exponential density is logconcave). For additional comments,

see Miescke (1984).

For the exponential family, Liang (1988) considered the goal of selecting the best

population and excluding all that are not good (same goal as that of RN:GL discussed

in Section 5.1). His sequential procedure with elimination is based on certain conditional

likelihood functions and it achieves the P*-requirement for CS(6").

5.3. Other Developments

There are other recent developments concerning, among other things, truncated ver-

sions of earlier open sequential procedures, improvements in Paulson's (1964) procedure,

and two-factor model with no interaction. For a discussion of these and other develop-

ments, see Gupta and Panchapakesan (1990).

6. Lower Confidence Bounds for the Probability of a Correct Selection

Let Xj,j = 1,...,n, be a sample of size n from a population sr,, where 7rl,... ,rk

are independently distributed with continuous distribution function G(x - 0), 1 < i <

k. Let 0[1i :5 ... :5 0fkl denote the ordered 8,. The population associated with 0[&i is

called the best population. Assume that the experimenter is interested in the selection

of the best population. For this purpose, an appropriate statistic Y' Y (Xi ,..., Xi=)
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with cumulative distribution function F.(u - OI) is chosen, and the natural selection rule

that selects the population yielding the largest Y1 as the best population is applied. Let

CS (correct selection) denote the event that the best population in selected. Then, the

probability of a correct selection (PCS) applying the natural selection rule is: For 0 =

(011...,tek),t i
00k-i

POC} s L F.(Y + 8[Aj-#[jj)dF(). (6.1)
i=1

To guarantee the PCS, Bechhofer (1954) introduced the indifference zone approach in

which the experimenter is asked to assign a positive value V" such that O[k] - O[k-1] > V".

However, in a real situation, it may be hard to assign the value of 6* such that 0[t] -Ojk-1]>

6', since the parameter values 09,... ,Ok are unknown. So that if the above assumption is

not satisfied, the PCS cannot be guaranteed to be at least equal to the prespecified level.

Parnes and Srinivasan (1986) have pointed out certain inconsistencies in the indifference

zone formulation of certain selection problems. Also, see Fabian (1962) and Hsu (1981)

for some possible ways to be out of this impasse.

Retrospective analyses regarding the PCS have been studied by several authors. Olkin,

Sobel and Tong (1976,1982) have presented estimators of the PCS. Faltin and McCulloch

(1983) have studied the small-sample properties of the Olkin-Sobel-Tong estimators for

k = 2 case. Bofinger (1985) has discussed the nonexistence of consistent estimators of

the PCS. Gutmann and Maymin (1987) have presented a procedure to test whether the

selected population is the best. Anderson, Bishop and Dudewics (1977) have given a lower

confidence bound on the PCS in normal distribution models.

In the following, we will review some recent developments regarding the construction

of lower confidence bounds for the PCS.

6.1. A Lower Confidence Bound on PCS for Distributions with MLR Property

In (6.1), replace 01j,] - *i,] by 01j1, - 81A,-11 for each i = 1,... ,k - 2. Then, one can

obtain an inequality

POlCS} > [F,,( + 01hl - 8Ik-1ljA'-'dF,%(1) •  (6.2)
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Kim (1966) proposed a method to find a conservative lower confidence bound on the

PCs by first finding a lower confidence bound on Slkj - O[k- 11

Let H(t) be the distribution of (Y1 - 01) - (Y 2 - 02). That is,

H(x) = J F,(z + y)dF.(y). (6.3)

The distribution H(z) is independent of the parameters 01 and 02, and H(z) is symmetric

about the point 0. For 0 < a < 1, let t./2 be the upper a/2-quantile of the distribution

H(z). By the symmetric property of H(z), t./ 2 > 0. For this fixed a, define a nonnegative

function L. (t) on [0, oo) implicitly by

H(L,(t) - t) + H(-L,(t) - t) = a for t > t,/2 (6.4)

and let La(t) = 0 if 0 <t < t,/2. Let Y11] :5 ... <5Y~ denote the ordered statistics

of Y..... , Ye,. Also, let fa be the associated pdf of the distribution function F,. Finally,

define

PL [FR(y~ + L*(Y[kj - Y11,- 1]))kdF, (y). (6.5)

Theorem 6.1 (Kim (1986)). Assume that log fR(y) is concave. Then,

inf PO{9[AJ -
9OIs...iJ La(Ytj - Yrk,-1I)} = 1 - a,

and hence,

PO{PO{CS} PL) 1-a for all 0.

6.1.1. Normal Populations with a Common Variance

Let Xi1 ,j = 1,.,,be a sample of size na from N(Oi, 2 ), i = 1,...,kc, where the

common variance v2 may be either known or unknown. The best population is the one

associated with Ojki. Let Y, E X,, be the sample mean for each s= 1.,k. The

natural selection rule selects the population yielding the largest sample mean value Y111 as

the best population. The PCS is:
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where #(.) is the standard normal distribution.

When the common variance a2 is known, for 0 < a < 1, the function L,(t) is implicitly

defined such that

*(La(t) - t) + *(-L,(t) - t) = a for t > Z/ 2 ,

and L.(t) = 0 for 0 _ t < z./2, where z./2 is the upper a/2-quantile of 0(.). Kim (1986)

obtained a lower confidence bound for the PCS which is given as follows:

= L: [0( + VL( -Id(),

and PO{PO{CS} >_ PL,} > 1- a for all 0.
Is n

When the common variance ar2 is unknown, let S2 = (Xii -y) 2 , where
i2 jai

= k(n - 1). Note that Z5 has a x2-distribution with v degrees of freedom. Let QV

denote the distribution of S/u. For given 0 < a < 1, let L* (t) be the function implicitly

defined by

j [*(L,*(t) - tu) + *(-L*(t) - tu)]dQ,(u) = a for t > t./ 2 (P)

and L.,(t) = 0 for 0 < t < t,.12(0, where t,/ 2 (v) is the upper a/2-quantile of the t-

distribution with v degrees of freedom. Kim (1986) obtained a lower confidence bound for

the PCS as follows:

= 0J [0 (z + V2L' ( Il/is Yk-1 k

and PO{Pg{CS} _> PL) _ 1 - a for all 0.

The table used to implement the procedures has been tabulated by Kim (1986) for

a = 0.5 and 0.1 for some Y values.

6.1.2. Two-Paramete Exponential Populations

Let Xq,j f 1,...,n, bo ample of sie n from a two-parameter exponential dis-

tribution with pdf g(z#i,,B) f e- .xp(-(z - D)/1 )I(ei,)(z), s = 1,...,k, where the
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common scale parameter 6 > 0 may be either known or unknown. The best population

is the one associated with O[k]. Let 1' = min(X 1,...,X,), i = 1,...,k. The natural

selection rule selects the population yielding Y[kj as the best population. The PCS is:

k-i

PO{cs } = Jv= f~j [i - exp(-(y + nfpqk - O~i])/f3))] e-ydy.
i:=1

Let H(t) be the distribution function of "(y'-0'3 _ n(Y2-02) Then,

1-le - t if t>0;
H(t)= et if t<0.

When the common scale parameter # is known, for 0 < a < 1, let t,/ 2 denote the

upper a/2-quantile of H(t). Then, the function L,(t) is implicitly defined by

H(La(t) - t) + H(-L(t) - t) = a for t > ta,/2

and L.(t) = 0 for 0 < t < ta/2.

Gupta, Leu and Liang (1990) obtained a lower confidence bound for the PCS as

follows:

[IL f - exp(-, - L-,(n(Yl -

and Pe{Pe{CS} _ PL} _ 1 - a for all 0.

k n
When the common scale parameter P3 is unknown, let S = F, (Xi - Y1), where

i=1I=1

v =k(n- 1). Then has a r(v, 1) distribution. Let Q,(') denote the distribution of

S/I. For 0 < a < 1, let t./2 be the point such that fo H(-ta*/2 y)dQJ(y) = a/2. The

function Lc(t) is then implicitly defined by

j [H(L,*(t) - yt) + H(-L:(t) - yt)1dQ&,(y) = a for t > t,/ 2,

and L.(t) =0 for 0 < t ./2

Gupta, Leu and Liang (1900) obtained the following lower confidence bound for the

PCS:

P = 'I - exp(-y - L.'(n(Y(k - Yr,I)/))lk-e-vdy,
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and Pe{POCS} _ PZ}) _1 - a for all 0.

The table used to implement the procedures has been tabulated by Gupta, Leu and

Liang (1990) for a = 0.05 and 0.1 for some v values.

6.2. Lower Confidence Bounds on the PCS for General Location-Parameter

Models

Gupta and Liang (1987) have constructed lower confidence bounds on the PCS for

general location-parameter models, where the sample size n is determined according to

the indifference zone formulation of Bechhofer (1954). Note that

in PO{CS}= [F, (y + 6*)1l-dFn(y), (6.6)
OEl(-) cco

where fl(6*) = 0[k- 0[k-1] 6*} is called the preference zone. Suppose that the right-

hand-side of (6.6) is an increasing function of n, and tends to one as n tends to infinity.

For a given probability level P*(k- 1 < P* < 1), let

no-no(b*,P*)=min n: [F(y +6)1l'dF,(y) P" . (6.7)

That is, no is the minimum common sample size so that the PCS will be guaranteed at

least to be P* when the natural selection rule is applied and 0 E fl(b*).

Let Yi] ... < Yj] denote the ordered statistics of Yi,... ,Yk. For given 0 < a < 1,

let c(k, no, a) be the value such that

max (Y, -9, ) - min (Y - 9,) < c(cn°'a) 1 - a. (6.8)

Note that the value of c(k, no, a) is independent of 0. Define

6L, = (Y[] - Y[, - c(k, no, a)) + , (6.9)

where y+ = max(0,y), and

00k-1
PL = L fI F.(, + SLjdF.(). (6.10)
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Gupta and Liang (1987) proposed PL as an estimator of a lower bound of the PCS,

and obtained the following result.

Theorem 6.2 (Gupta and Liang (1987)).

PO{#(O[ - Oij !L, for all i = 1,..,k - 11 > I - a for all 0,

and therefore,

Pef{P(CS} PL) > I- a for all 0.

6.2.1. Normal Population with a Common Variance

Consider k normal populations N(O9, o2), i = 1,..., k, with unknown means 01,... ,

and common variance o2, where a2 may be either known or unknown.
no

When the common variance a2 is known, let Y F = X jj, where X 1 , ... , Xin is

a sample of size no from N(Oi, o 2) and no is determined, for the indifference zone function,
by no=min n:f [@ (z+-*)I k-I d(x)>P.}

where both 6"(> 0) and P*(k-I < P* < 1) are prespecified by the experimenter. The

PCS applying the natural selection rule is

P..{CS}= fH-o k I + V'/(8jkI - [S)) d(().

For given 0 < a < 1, choose the value c(k, no, a) such that

Note that here, c(k,n, a) - where q*, is the 100(1 - a)%th percentile of

Tukey's studentized range statistic with parameter (k, oo). The value of q*' is available

from Harter (1965). Define

L= (Ylk - Yil - c(k, no, i))

and
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PL f p I- Xl,(+ ori~L~ df(z).

Then, by Theorem 6.2, P9 {P 9 {CS} ! PI_ 1 - a for all 0.

When the common variance a 2 is unknown, Bechhofer, Dunnett and Sobel (1954)

presented a two-stage selection rule given as follows.

Take a sample of size no(no 2) observations from each of the k populations.
= n k no

Compute YE(no) = _ Xii, i = 1,..., k, and S2  L E (Xii- Yj(no)), where
j=1 =lj=1

v = k(no - 1). Define N = max (no, , where [y] is the smallest integer not less

than y, and h is a positive value such that

f f _ 4(z + wh)l;-'dO(x)dFw(w)=P*

where Fw (.) is the distribution function of the nonnegative random variable W with vW 2

following a X2 (v)-distribution.

Then, take N - no observations from each of the k populations. Compute the overall
N

sample mean Y,(N) E k X,,, i = 1,... ,k. The natural selection rule selects the
j=1

population yielding the largest sample mean value Ypt] (N) as the best population.

For this two-stage selection rule,

P{CS} _> f b- (z + h(Ork-Gil)w) dO(x)dFw(w).0 0 i=1 6

Let c = Sq",,,/v'N, where qk, is the 100(1 - a)%th percentile of Tukey's studentized

range statistic with parameters (k, v). Define SL, = (YIkl (N) - Vjj1 (N) - c) +. Let

OL f "/.rl"'@ X'+ h ) d f ( x) d F W ( w) ., _

Gupta and Liang (1987) obtained the following lower confidence bound on the PCS:

P{([Ofk - [i , for all i = I,..., k - 1} >1 - a for all 0,

and therefore,

PO(P(CS} > 0,L) 1 - a for all.
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